

A Railway Simulation Landscape Creation Tool Chain Considering OpenStreetMap Geo Data

Christian Rahmig, Andreas Richter DLR Institute of Transportation Systems Braunschweig, Germany

Overview

- Motivation
 - Railway driver's cab simulation RailSET
 - → OpenStreetMap (OSM)
- → Approach
 - → Defining OSM Layers
 - → The OSM-4-Railway tool chain
 - Excursus: railML infrastructure
 - → The SimWorld tool chain
 - Adapting the SimWorld tool chain
- Implementation
- → Summary

Railway Driver's Cab Simulation RailSET*

- Purpose:Human Factorsanalyses fortrain drivers
- realistic 3D model of the railway line to be used for simulation (topology, geometry)

* **RailSET** = Railway Simulation Environment for Train Drivers and Operators

Initial Situation

Simulation in the RailSET laboratory is based on ZUSI

Initial Situation

Simulation in the RailSET laboratory is based on ZUSI

Gleise

Weichen

Signale

Stellwerk

Zusi

Zug

Source: www.zusi.de

Fahrzeuggeräte

Geo-Daten

Stellwerksschnittstellen

Initial Situation – Problems

- The number of lines to be simulated within the RailSET laboratory environment is limited
- The generation of tracks/lines for simulation is expensive (time, students)
- Zusi does not consider the combination with existing real geo data, e.g. digital terrain models
- → Currently, it is not possible to model/visualize/simulate arbitrary lines in short term
- Goal: to model, visualize and simulate arbitrary tracks within the RailSET laboratory environment
- Task: Concept and implementation of a process chain for simulationbased scenario and landscape generation using existing geo data sources

OpenStreetMap

- → OpenStreetMap (OSM) project was founded in 2004
- → Goal: free world map

#users	1.591.275
#GPS points	3.938.715.439
#nodes	2.301.912.824
#ways	228.191.041
#GPX files 14.04.2014	224
Size Planet.osm	>400 GB (29 GB compressed)

Sources:

- OpenStreetMap stats report run at 2014-04-15 00:00:14 +0000; http://www.openstreetmap.org/stats/data_stats.html
- Planet.osm; http://wiki.openstreetmap.org/wiki/Planet.osm

OSM Data Model

Die freie Wiki-Weltkarte

- Goal: free world map
- → Data model: "the simplest thing that could possibly work" (Ramm, 2010)

TABLE I
THE BASIC OSM DATA TYPES AND THEIR ATTRIBUTES

	nodes	ways	relations
Tag: Key-Value pair		id	id
e.g. Key = "railway", Value	- subway"	version	version
e.g. itey = "ranway , value	- "Subway	timestamp	timestamp
	changeset ID	changeset ID	changeset ID
IDamen 2010 Damen F. Tauf J. Chillen C.	visible	visible	visible
[Ramm, 2010] Ramm, F.; Topf, J.; Chilton, S.: 'OpenStreetMap. Using and Enhancing	latitude	{wayNodes}	{relationMembers}
the Free Map of the World.' UIT Cambridge,	longitude		
2010.	tile + tags	+ tags	+ tags

OSM Railway Tag

- Railway data are not that exactly modelled like roads and streets
- → There are 388 different values for the tag "railway" [4]

TABLE II COMMONLY USED VALUES FOR THE KEY "RAILWAY"

abandoned	construction	disused	funicular
light_rail	miniature	monorail	narrow_gauge
preserved	rail 52.8 %	subway	tram
halt	station	tram_stop	buffer_stop
derail	crossing	level_crossing	turntable

[4] OpenStreetMap: "taginfo keys railway"; http://taginfo.openstreetmap.org/keys/?key=railway#values; last access: 15.04.2014

OSM Railway Tag

- Railway data are not that exactly modelled like roads and streets
- → There are 388 different values for the tag "railway"

TABLE II COMMONLY USED VALUES FOR THE KEY "RAILWAY"

abandoned	construction	disused	funicular
light_rail	miniature	monorail	narrow_gauge
preserved	rail	subway	tram
halt	station	tram_stop	buffer_stop
derail	cros Map-matching / routing: There is no clear		

→ How to use these data e.g. for building a simulation environment?

topological and geometrical map representation.

OSM Layers

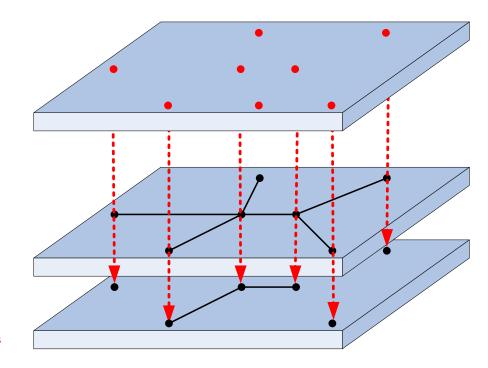
- Regarding the OSM data model there are only three "layers":
 - **フ Nodes**
 - → Ways TABLE I
 - **THE BASIC OSM DATA TYPES AND THEIR ATTRIBUTES**

nodes	ways	relations
id	id	id
version	version	version
timestamp	timestamp	timestamp
changeset ID	changeset ID	changeset ID
visible	visible	visible
latitude	{wayNodes}	{relationMembers}
longitude		
tile		

OSM Layers

Regarding the OSM data model there are only three "layers":

Nodes


→ Coordinates Layer

Ways

Referencing nodes

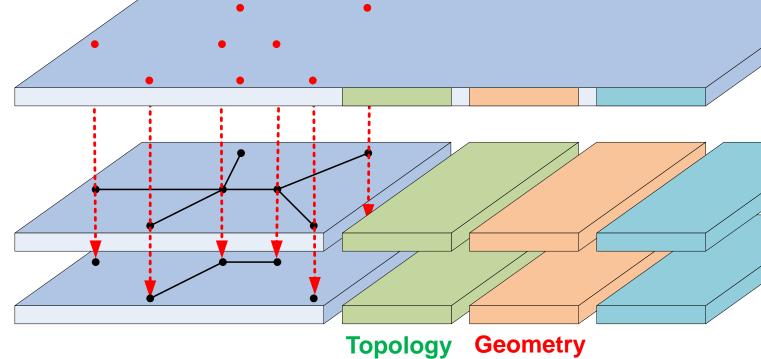
Relations

Referencing nodes, ways and relations

ApproachNew OSM Layers

→ We want to define topic-specific layers:

Nodes


→ Coordinates Layer

Ways

Referencing nodes

Relations

Referencing nodes, ways and relations

ApproachNew OSM Layers

We want to define topic-specific layers:

New topic-specific tags for the nodes

→ Coordinates Layer

New topic-specific layers with new tags for the ways and relations

Referencing nodes

Relations

Topology

Referencing nodes, ways

and relations

Geometry

Approach Layer-specific OSM tags

Table 1: Keys for railway topology modelling

node	way	relation
topologyName	topologyName	topologyName
	dir	type = "connection"
	length	course

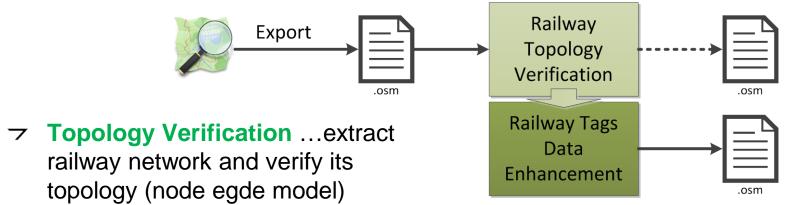
Layer-specific OSM tags

Table 1: Keys for railway topology modelling

Table 4: Keys for railway accuracy modelling

node	way	relation		node	way	relation
topologyName	topologyName	topologyName		sigmaLon	maxCamber	
	dir	type = "connection"		sigmaLat		
_	lenoth	course		sioma Alt		
`	Me define 07 to se for the decoration of the reflection of the reflection					

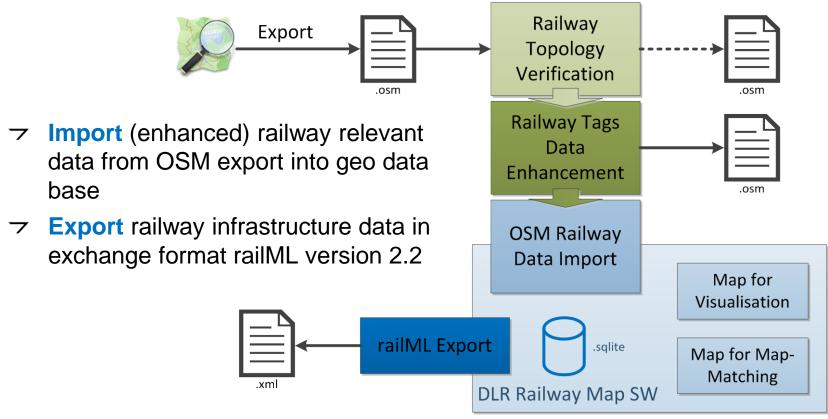
Table 2: k


We define 37 tags for the description of the railway track network as needed by most of the railway geodata applications.

σ

node	way	relation
geometryName	geometryName	geometryName
pos	fromPos	type =
		"complexGeometry"
curvature	toPos	geometryType
gradient	length	
superelevation	curvature	
	gradient	
	superelevation	

node	way	relation
topographyName	topographyName	topographyName
pos	fromPos	type =
		"railNodeElement" /
		"railWayElement"
dir	toPos	elementType
distanceToTrack	distanceToTrack	


The OSM-4-Railway Tool Chain

Railway Data Enhancement ...add layer-specific tags to the railway elements in the map

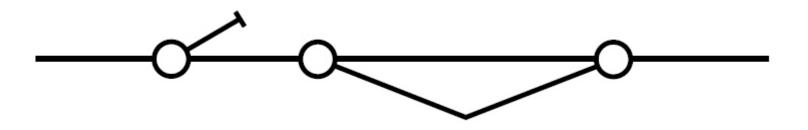
The OSM-4-Railway Tool Chain

Excursus

railML®

- Railway Markup Language
- XML-Schema-based description language
- Generic data exchange format for better communication between different IT applications in railways
- → railML.org-Initiative
 - European railways (infrastructure managers and undertakers)
 - Software and consulting companies
 - Research facilities (universities, institutes)
- → Sub-schemas:
 - フ Infrastructure
 - → Timetable
 - → Rollingstock

www.railML.org



infrastructure

Excursus: railML®

What is railML® Infrastructure?

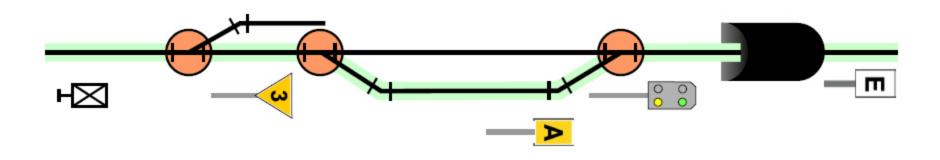
- **▽** Track Topology
- → Track Geometry
- Track Topography and railway service-relevant data

... Graph with Nodes and Edges

Excursus: railML®

What is railML® Infrastructure?

- Track Topology
- **→ Track Geometry**
- Track Topography and railway service-relevant data



... straight lines, curves, increasing/decreasing slope

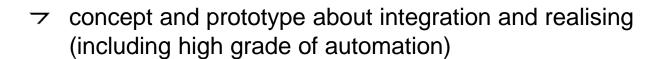
Excursus: railML®

What is railML® Infrastructure?

- → Track Topology
- → Track Geometry
- Track Topography and railway service-relevant data

... signals, platforms, tunnels, electrification etc.

Pictures: Böhringer, F.: Gleisselektive Ortung von Schienenfahrzeugen mit bordautonomer Sensorik; Dissertation; Karlsruhe, 2008

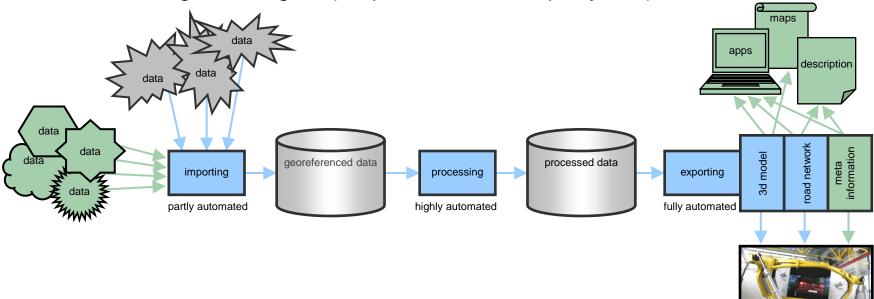

SimWorld / Virtual World

- Goal of project "Virtual World":
 - Create a Digital Atlas capable to describe multimodal metropolitan areas (road, rail, development, environment, infrastructure, ...)
 - The Digital Atlas in the context of the project Virtual World will contain data about Braunschweig as a demonstration area as virtual test site (see also AIM) and will keep growing during project duration...
 - Create a tool chain, that is able to generate automatically virtual worlds and logical road descriptions for driving and traffic simulations.

Source: "Virtual World – Digital Atlas of Multimodal Metropolitan Areas" by Andreas Richter (WAW 2013)

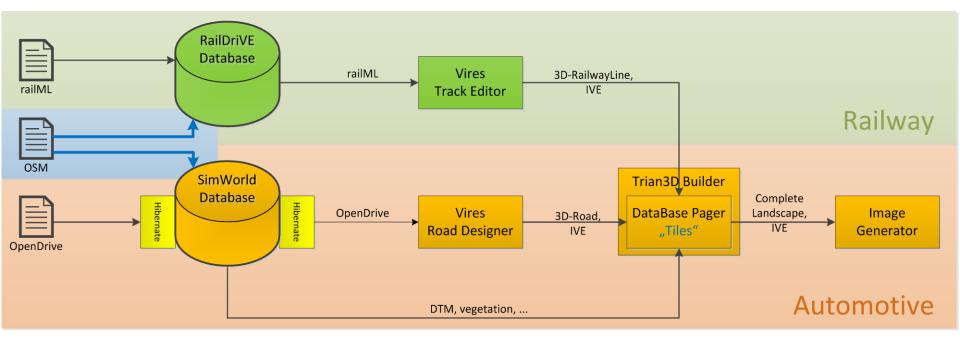
The SimWorld database

- database design (central component of integration platform)
 - designing database structure based of scene graph concept and OpenDRIVE
 - design of data interfaces for data import form various sources and for data export for applications using or refining this data
- database implementing
 - realising database in PostgreSQL / PostGIS
 - realising the exporters with OpenSceneGraph



The SimWorld Tool Chain

adding new data sources (from partners)


adding new targets (for partners or third party use)

- → full reuse of tool chain possible
- additional data in driving simulation available

Adapting the SimWorld Tool Chain

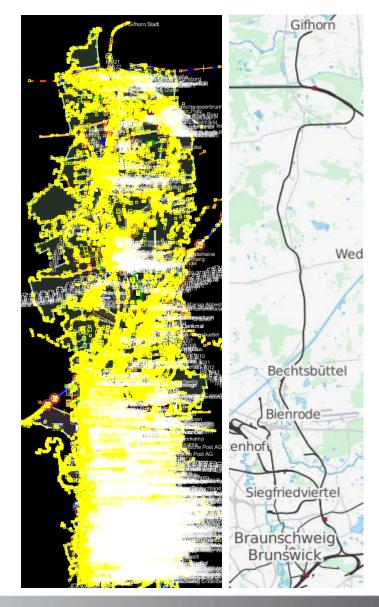
- Use Vires Track Editor to create railway lines for the RailSET simulation
- The result of the Track Editor is a 3D model of the railway line, which is fused with the 3D landscape model in the Trian3D-Builder software.

RailSET Simulation Laboratory Environment

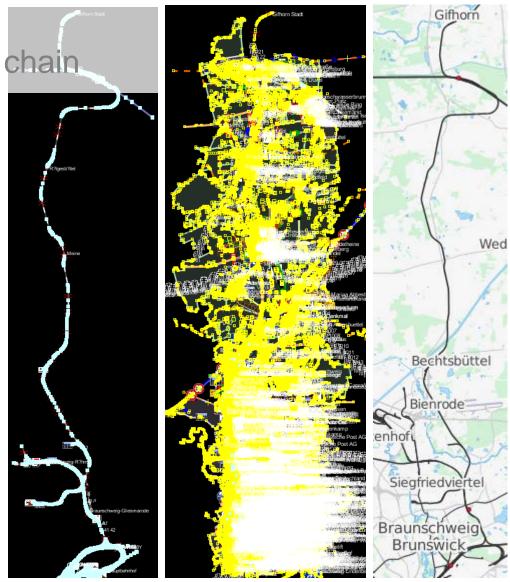
→ The RailSiTe/RailSET laboratory is being adapted from ZUSI to Vires

Source: www.vires.com

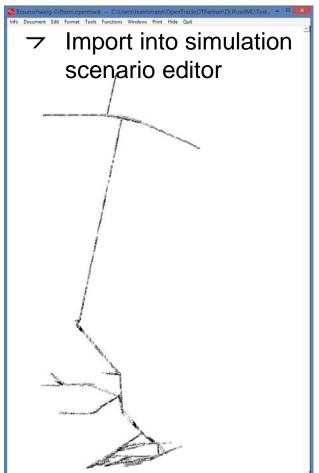
Vires-based simulations are used already in the Automotive Department of the Institute


OSM-4-Railway tool chain

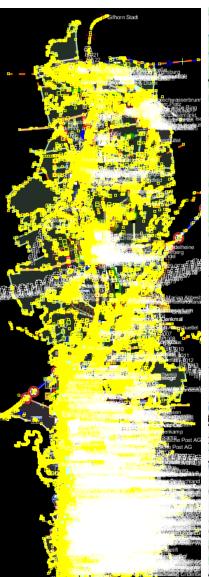
- The railway line from Braunschweig to Gifhorn has been selected for testing the tool chain implementation
- → Additionally, Vires built the railway reference line
 Braunschweig-Gifhorn within the AIM project for being
 used in the RailSET laboratory environment → can be
 used as reference

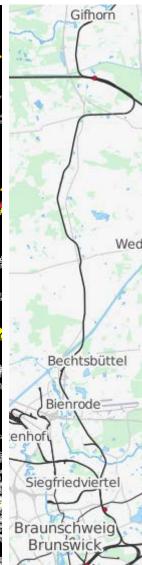

OSM-4-Railway tool chain

→ Export OSM data

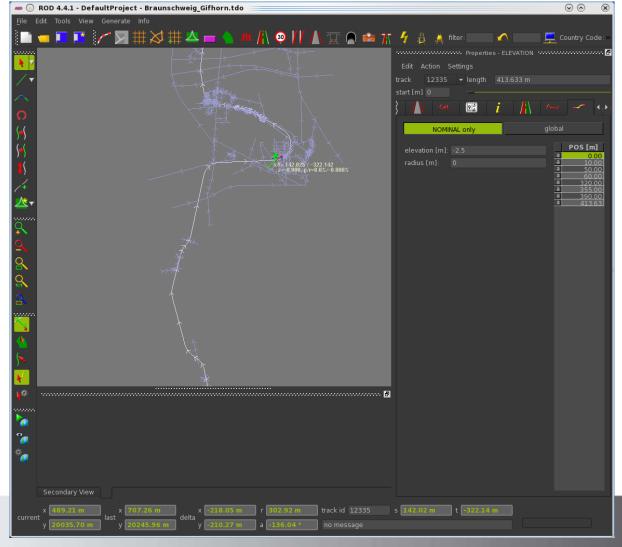

OSM-4-Railway tool chain


 OSM-4-Railway data verification and enhancement





OSM-4-Railway tool chain



Vires Track Editor

- The resulting railML infrastructure file is imported into the Vires Track Editor
- Purpose: create a 3D railway line model based on the given topology and geometry.

Result

Summary

- The current simulation environment of the railway driver's cab laboratory RailSET is not able to include existing geo data from various sources
- OpenStreetMap provides a free world map and an alternative to conventional geodata sources, which often lack of actuality or availability
- The OSM data model is very simple defining only three basic data types: nodes, ways and relations; elements are parametrized by arbitrary tags, which are not sufficient for many applications, e.g. routing
- Layer approach: we defined new topic-specific tags (layers), which enable OSM data usage providing track topology and track geometry; Many of the new tags can be calculated using existing OSM data
- By adapting the **SimWorld tool chain**, spatial data from various sources can be fused for building an integrated model of the railway line
- Future work will focus on the comparison of the OSM-based with the manual railway simulation landscape creation

